112. Dichotomy of Fe⁺-Mediated Sequential Activation of C-H/C-C Bonds of Aldimines: A Case of Efficient Reaction Control by Chain-Length Effects

Preliminary Communication

by Tilmann Prüsse and Helmut Schwarz*

Institut für Organische Chemie der Technischen Universität Berlin, Strasse des 17. Juni 135, D-1000 Berlin 12

(15.V.90)

The metastable ions of Fe⁺ complexes of aldimines $R^1N=CHR^2$ exhibit a unique behaviour in that sequential loss of olefin/H₂ follows two distinct pathways: one corresponds to the familiar pattern of double remote functionalization, involving either alkyl chain R¹ and R². In addition, based on labeling studies, evidence is presented demonstrating that the consecutive elimination of C₂H₄/H₂ from the Fe⁺ complex of C₆H₁₃N=CHC₃H₇ involves exclusively the C₆H₁₃ part of the substrate. These and other Fe⁺-mediated C-H/C-C bond activations of aldimines are controlled by chain-length effects, reflecting the preferential formation of metallacyclic intermediates of particular ring sizes.

In recent studies [1], we demonstrated the operation of transition-metal-ion-mediated successive C-H/C-C bond activation¹) of different sites of flexible molecules, a reaction

¹) For leading references on the topic of C-H/C-C bond activation by bare and ligated transition-metal ions, see [2].

having no precedent in traditional organic chemistry. Evidence was presented that, for example, bare Fe⁺ 'anchored' to a C=O function of ketones is capable to generate olefins (C_2H_4, C_3H_6) from the terminal part of one alkyl chain ('remote functionalization'); subsequently, H₂ is formed from the $[M - \text{alkene}]^+$ intermediate by regiospecific C-H bond activation of the *other* alkyl chain (*Scheme 1* for undecan-5-one/Fe⁺ [1a, c]). A similar principle of double remote functionalization was also found to be operative in Fe⁺ complexes of α -branched aliphatic nitriles [1a, b]. Processes, in which the consecutive losses of C_nH_{2n}/H_2^2) take place within the same alkyl chain (*Scheme 1*: $3 \rightarrow 6 \rightarrow 7$) have never been encountered yet.

In the course of a detailed study of the gas-phase chemistry of Fe⁺ complexes of aliphatic aldimines **8**³), we did not only observe activation of both the geminal R¹ chain and, across the C=N bond, C-H/C-C bonds of R² (*Scheme 2*); more interestingly, an initial study of several deuterated isotopomers of C₄H₉N=CHC₃H₇ (**8a**) and C₆H₁₃N=CHC₃H₉ (**8b**) revealed that, depending upon the chain lengths of R¹ and R², sequential activation of different sites of R¹/R² as well as within one alkyl chain (R¹) is operative.

The metastable-ion (MI) mass spectrum of **8a**-Fe⁺ contains signals due to losses of H₂ (89%), C₂H₄ (4%), 'C₂H₆' (3%), and C₄H₈ (4%). In the analogous spectrum of **8b**-Fe⁺ we observe H₂ (33%), C₂H₄ (22%), 'C₂H₆' (10%), C₃H₆ (25%), 'C₃H₈' (8%), and C₄H₈ (2%). With regard to the actual nature of the mass differences $\Delta m = 30$ and 44 ('C₂H₆' and 'C₃H₈'), it should be mentioned that these do *not* correspond to the generation of authentic alkane molecules. Rather, these mass differences are due to consecutive losses of C_nH_{2n}/H₂. As noted earlier for the Fe⁺ complexes of ketones and α -branched nitriles [1], the reverse sequence, *i.e.* elimination of H₂ followed by loss of C_nH_{2n}, is not observed. This conclusion is inferred from the fact that only mass-selected (M – alkene]⁺ ions decompose further *via* H₂ loss; in contrast, in the MI mass spectra of mass-selected (M – H₂]⁺ species, no signal is observed corresponding to further losses of alkenes. Presumably, the [M – H₂]⁺ fragment ion is stabilized due to the formation of a bidentate structure.

²) The reverse sequence, *i.e.* loss of H_2 followed by elimination of $C_n H_{2n}$, was not observed.

³) The experimental set-up has been described repeatedly in earlier papers. Briefly, Fe⁺ ions are generated by 100-eV electron impact ionisation of Fe(CO)₅. The ions were then reacted with the organic substrates in the ion source of our modified ZAB mass spectrometer, which is of BEBE configuration (B stands for magnetic and E for electric sector). The resulting complexes 8 are accelerated to 8-keV kinetic energy and mass selected by using B(1) E(1); the unimolecular reactions (MI spectra) occurring in the field-free region between E(2) and B(1) were recorded by scanning B(2). Signal averaging techniques were used to increase the signal-to-noise-ratio. All compounds studied were synthesized and purified by standard laboratory procedures and characterized by established spectroscopic techniques. In line with previous studies [3], we assume an (*E*)-configuration for the C=N bond of the alignatic aldimines.

Precursor		Δm									
		2	3	28	30	31	32	42	43	44	45
$C_4H_9N=CHC_3H_7$	8a	100		61	39 ^b)						
$C_4H_9N = CHCH_2CH_2CD_3$	8a'	96	4	23	28 ^c)	7 ^e)	42 ^d)				
$CD_3(CH_2)_3N = CHC_3H_7$	8a″	14	86	36	15 ^c)	43 ^e)	6 ^d)				
$C_6H_{13}N=CHC_3H_7$	8b	100		68	32 ^b)			77		23 ^f)	
$C_6H_{13}N = CHCH_2CD_2CH_3$	8b′	100		64	36 ^b)			80			20 ^g)
CH ₃ CD ₂ (CH ₂) ₄ N=CHC ₃ H ₇	8b″	15	85	3	67°)		30 ^d)		75		25 ^h)

 Table. Isotopomer Distributions for the Losses of Molecular Hydrogen, Ethylene, and Propene from Fe⁺ Complexes of Labeled Aldimines 8f, 8j, and 8r^a)

^a) Data are expressed in $\Sigma \Delta m = 100\%$ for each class of neutrals separately.

^b) $\Delta m = 30$ corresponds to C₂H₄/H₂.

^c) $\Delta m = 30$ corresponds to C₂H₂D₂.

^d) $\Delta m = 32$ corresponds to $C_2H_2D_2/H_2$.

^e) $\Delta m = 31$ corresponds to C₂H₄/HD.

f) $\Delta m = 44$ corresponds to $C_3 H_6/H_2$.

^g) $\Delta m = 45$ corresponds to C₃H₆/HD.

^h) $\Delta m = 45$ corresponds to C₃H₅D/H₂.

Quite unexpected are the results (*Table*) obtained for the isotopomers of $C_4H_9N=CHC_3H_7$ (**8a**). Here, H_2 preferentially originates from the $\omega/(\omega - 1)$ positions of R^1 (86%). This finding clearly points to a preferential interaction of the metal ion with the geminal substituent (*Scheme 2*: trajectory **a**), provided R^1 contains at least a C_4 chain. In contrast, ethylene is provided to roughly the same amount by the terminal positions of either R^1 and R^2 . The sequential ethylene/hydrogen reactions uncover a further mechanistic subtlety: while in the first step ethylene originates from either alkyl chain, the subsequent molecular hydrogen loss involves mainly R^1 (presumably the $\omega/\omega - 1$ positions). This follows directly from the fact that the Fe⁺ complex of **8a'** splits off preferentially $\Delta m = 32$ ($C_2H_2D_2/H_2$) and only little of $\Delta m 31$ (C_2H_4/HD) in a relative ratio of 42:7; in constrast, **8a''**-Fe⁺ undergoes loss of $\Delta m 31$ with 42% and $\Delta m 32$ with 6%. This again, points to a preferential C–H bond activation of the geminal, saturated alkyl chain R¹. From the data of the isomeric isotopomers **8a'** and **8a''**, we are forced to conclude that a degenerate, Fe⁺-mediated isomerization of the aldimines, *via* double-bond migration, does not take place.

If the chain length of R¹ is increased to C₆H₁₃N=CHC₃H₇ (**8b**), molecular hydrogen remains to originate from R¹, involving the $(\omega - 1)$ position (> 85%) together with an H-atom from either the ω or the $(\omega - 2)$ positions. R² does not serve as a source for molecular hydrogen as evidenced by the exclusive formation of H₂ from C₆H₁₃N=CHCH₂CD₂CH₃. In comparison with **8a**, a strikingly dissimilar behaviour is encountered for the consecutive formations of C₂H₄/H₂ vs. C₃H₈/H₂. The latter sequence follows the familiar pattern already described in *Scheme 1* for ketone/Fe⁺ complexes, *i.e.* propene originates from the terminal part of R¹ and H₂ from the other alkyl chain R². A novel pattern is found for the combined elimination of C₂H₄/H₂. The labeling data clearly suggest that *both* neutral molecules are formed from the *same* side chain, *i.e.* from R¹. These findings permit the following generalizations to be made for aldimines: whenever permitted by the chain length of R¹, it is the geminal alkyl group whose C-H/C-C bonds are preferentially activated by Fe⁺. If the alkyl chain R¹ contains less than four C-atoms, as is the case after loss of C_3H_8 from $C_6H_{13}N=CHC_3H_7$ (**8b**), the reactivity is 'transferred' to the *alkenyl* group R²; as a consequence, the consecutive generation of H₂ involves the $\omega/(\omega - 1)$ positions of R². In contrast, loss of C_2H_4 from the terminal part of the C_6H_{13} chain generates, in a formal sense, $C_4H_9N=CHC_3H_7$ (**8a**); as already demonstrated for **8a**-Fe⁺, this species undergoes with high selectivity C–H bond activation of the C₄H₉ chain. Obviously, the dichotomy of Fe⁺-mediated C–H/C–C bond activation of different sites of aldimines is a direct consequence of chain-length effects of R¹ and R² reflecting the particular role of the ring sizes of metallacycles generated as intermediates.

We gratefully acknowledge the support of our work by the following institutions: Deutsche Forschungsgemeinschaft, Volkswagen-Stiftung, Fonds der Chemischen Industrie, Graduiertenkolleg Chemie Berlin, and Gesellschaft von Freunden der Technischen Universität Berlin. Technical assistance by Sascha Fischer is appreciated.

REFERENCES

- a) G. Czekay, K. Eller, D. Schröder, H. Schwarz, Angew. Chem. 1989, 101, 1306; *ibid. Int. Ed.* 1989, 28, 1277;
 b) G. Czekay, T. Drewello, K. Eller, W. Zummack, H. Schwarz, Organometallics 1989, 8, 2439; c) D. Schröder, H. Schwarz, J. Am. Chem. Soc. 1990, 112, 0000.
- [2] a) J. Müller, Angew. Chem. Int. Ed. 1972, 11, 653; b) J. Müller, 'The Organic Chemistry of Iron', Academic Press, New York, 1978, Vol. 1, p. 145; c) J. L. Beauchamp, A. E. Stevens, R. R. Cordermann, Pure Appl. Chem. 1979, 51, 967; d) B. S. Freiser, Talanta 1985, 32, 697; e) J. Allison, Prog. Inorg. Chem. 1986, 34, 627; f) P. B. Armentrout, in 'Structure/Reactivity and Thermochemistry of Ions', Eds. P. Ausloos and S. G. Lias, D. Reidel, Dordrecht, 1987, No. 193, p.97; g) D. P. Ridge, *ibid.* 1987, No. 193, p. 165; h) D. H. Russell, 'Gas-Phase Inorganic Chemistry', Plenum, New York, 1989; i) J. L. Beauchamp, in 'High-Energy Processes in Organometallic Chemistry', Ed. R. E. Suslick, ACS Symp. Ser. 333, 1987; k) S. W. Buckner, B. S. Freiser, Polyhedron 1988, 7, 1583; l) P. B. Armentrout, R. Georgiadis, *ibid.* 1988, 7, 1573; m) P. B. Armentrout, J. L. Beauchamp, Acc. Chem. 1989, 22, 315; n) B. S. Freiser, Anal. Chim. Acta 1985, 178, 137; o) B. S. Freiser, Chemtracts Anal. Phys. Chem. 1989, 1, 65; p) G. Czekay, T. Drewello, K. Eller, C. B. Lebrilla, T. Prüsse, C. Schulze, N. Steinrück, D. Sülzle, T. Weiske, H. Schwarz, in 'Organometallics in Organic Synthesis 2', Eds. H. Werner and G. Erker, Springer, Heidelberg, 1989, p. 203; q) H. Schwarz, Acc. Chem. Res. 1989, 22, 292; r) K. Eller, H. Schwarz, Chimia 1989, 43, 371.
- [3] R. Paetzold, M. Reichenbäcker, K. Appenroth, Z. Chem. 1981, 21, 421, and ref. cit. therein.